
T
a

E
a

b

a

A
R
R
A
A

K
A
A
A
A
C
F

1

m
P
c
o
h
t
d
c
F
a
h
b
e
m
i
s
o
[

(

0
d

Journal of Hazardous Materials 179 (2010) 127–134

Contents lists available at ScienceDirect

Journal of Hazardous Materials

journa l homepage: www.e lsev ier .com/ locate / jhazmat

he use of artificial neural network (ANN) for modeling of COD removal from
ntibiotic aqueous solution by the Fenton process

mad S. Elmollaa,∗, Malay Chaudhuria, Mohamed Meselhy Eltoukhyb

Dept. of Civil Engineering, Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia
Dept. of Electical and Elctronics Engineering, Universiti Teknologi PETRONAS (UTP), Bandar Seri Iskandar, 31750 Tronoh, Perak, Malaysia

r t i c l e i n f o

rticle history:
eceived 16 October 2009
eceived in revised form 11 January 2010
ccepted 21 February 2010
vailable online 1 March 2010

eywords:

a b s t r a c t

The study examined the implementation of artificial neural network (ANN) for the prediction and simula-
tion of antibiotic degradation in aqueous solution by the Fenton process. A three-layer backpropagation
neural network was optimized to predict and simulate the degradation of amoxicillin, ampicillin and
cloxacillin in aqueous solution in terms of COD removal. The configuration of the backpropagation neural
network giving the smallest mean square error (MSE) was three-layer ANN with tangent sigmoid transfer
function (tansig) at hidden layer with 14 neurons, linear transfer function (purelin) at output layer and
rtificial neural networks
ntibiotics
moxicillin
mpicillin
loxacillin
enton process

Levenberg–Marquardt backpropagation training algorithm (LMA). ANN predicted results are very close
to the experimental results with correlation coefficient (R2) of 0.997 and MSE 0.000376. The sensitivity
analysis showed that all studied variables (reaction time, H2O2/COD molar ratio, H2O2/Fe2+ molar ratio,
pH and antibiotics concentration) have strong effect on antibiotic degradation in terms of COD removal.
In addition, H2O2/Fe2+ molar ratio is the most influential parameter with relative importance of 25.8%.
The results showed that neural network modeling could effectively predict and simulate the behavior of

the Fenton process.

. Introduction

Antibiotics are hazardous contaminants in the aquatic environ-
ent because of their adverse effects on aquatic life and humans.

roblem that may be created by the presence of antibiotics at low
oncentration in the environment is the development of antibi-
tic resistant bacteria [1]. Advanced oxidation processes (AOPs)
ave proved to be highly effective for the removal of most of
he pollutants in wastewaters [2]. Application of advanced oxi-
ation processes for degradation of amoxicillin, ampicillin and
loxacillin antibiotics has been reported [3–7]. Oxidation with
enton’s reagent is based on ferrous ions, hydrogen peroxide
nd hydroxyl radicals produced by the catalytic decomposition of
ydrogen peroxide in acidic solution [8]. Treating of wastewater
y AOPs is quite complex, since the process is influenced by sev-
ral factors. Due to complexity of the process, it is difficult to be
odeled and simulated using conventional mathematical model-
ng. Artificial neural networks (ANNs) are now used in many areas of
cience and engineering and considered as promising tool because
f their simplicity towards simulation, prediction and modelling
9]. The advantages of ANN are that the mathematical descrip-
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tion of the phenomena involved in the process is not required, less
time is required for model development than the traditional math-
ematical models and prediction ability with limited numbers of
experiments [10]. Application of ANN to solve environmental engi-
neering problems has been reported in many articles. ANNs were
applied in biological wastewater treatment [11–26] and physico-
chemical wastewater treatment [27–30]. However, few studies on
applications of ANN in advanced oxidation processes (AOPs) have
been reported [31–33].

The present work investigated the implementation of ANN for
the prediction of antibiotic degradation in terms of COD removal
by the Fenton process. The ANN modelling outputs were compared
with the experimental data.

2. Materials and methods

2.1. Chemicals and antibiotics

Hydrogen peroxide (30%, w/w) and ferrous sulphate heptahy-
drate (FeSO4·7H2O) were purchased from R & M Marketing, Essex,

U.K. Analytical grade of amoxicillin (AMX) and ampicillin (AMP)
were purchased from Sigma and cloxacillin (CLX) from Fluka to
construct HPLC analytical curves for the determination and quan-
tification of the antibiotics. Amoxicillin (AMX), ampicillin (AMP)
and cloxacillin (CLX) used to prepare antibiotic aqueous solution

http://www.sciencedirect.com/science/journal/03043894
http://www.elsevier.com/locate/jhazmat
mailto:em_civil@yahoo.com
mailto:emadsoliman3@gmail.com
dx.doi.org/10.1016/j.jhazmat.2010.02.068
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Table 1
Comparison of 10 backpropagation algorithms with 5 neurons in the hidden layer.

Backpropagation (BP) algorithm Function Mean square error (MSE) Epoch Correlation coefficient (R2) Best linear equation

Levenberg-Marquardt backpropagation trainlm 0.00824866 30 0.994 y = 0.995X + 0.407
Scaled conjugate gradient backpropagation trainscg 0.0167993 99 0.988 y = 0.986X + 0.928
BFGS quasi-Newton backpropagation trainbfg 0.018824 55 0.987 y = 0.989X + 0.839
One step secant backpropagation trainoss 0.0306701 29 0.974 y = 0.958X + 2.59
Batch gradient descent traingd 0.486095 100 0.703 y = 0.387X + 33
Variable learning rate back propagation traingdx 0.449448 22 0.781 y = 0.405X + 30
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Batch gradient descent with momentum traingdm 0.50820
Fletcher–Reeves conjugate gradient backpropagation traincgf 0.02757
Polak–Ribi’ere conjugate gradient backpropagation traincgp 0.01756
Powell–Beale conjugate gradient backpropagation traincgb 0.02039

ere obtained from a commercial source (Farmaniage Company).
he commercial products were used as received without any
urther purification. Sodium hydroxide and sulfuric acid were pur-
hased from HACH Company, USA.

.2. Analytical methods

Chemical oxygen demand (COD) was determined according to
he Standard Methods [34]. If the sample contained hydrogen per-
xide (H2O2), to reduce interference in COD determination pH was
ncreased to above 10 to decompose hydrogen peroxide to oxygen
nd water [35–37]. pH was measured using a pH meter (HACH sen-
ion 4) and a pH probe (HACH platinum series pH electrode model
1910, HACH Company, USA). Biodegradability was measured by
-day biochemical oxygen demand (BOD5) test according to the
tandard Methods [34].

.3. Antibiotic aqueous solution

Antibiotics aqueous solution was prepared by dissolving the
pecific amounts of amoxicillin (AMX), ampicillin (AMP) and
loxacillin (CLX) in distilled water. It was prepared weekly and
tored at 4 ◦C.

.4. Experimental procedure

Batch experiments were conducted in a 600 mL Pyrex reac-
or with 500 mL of the antibiotic aqueous solution. The required
mount of iron in the form of FeSO4·7H2O was added to the aqueous
olution and mixed by a magnetic stirrer to ensure complete homo-
eneity during reaction. Thereafter, necessary amount of hydrogen
eroxide was added to the mixture simultaneously with pH adjust-
ent to the required value using H2SO4 or NaOH. The time at which

ydrogen peroxide was added to the solution was considered the
eginning of the experiment. Samples were taken at pre-selected
ime intervals using a syringe. The samples were then filtered
hrough 0.45 �m membrane filter and tested for chemical oxygen
emand (COD).

.5. Artificial neural network (ANN)

Artificial neural networks are known for their ability of learning,
imulation and prediction of data. The inspiration of using neural
etwork came from the biology of human brain [29,31]. Disad-
antage of artificial neural network is its “black box” nature. The
ndividual relations between the input variables and the output
ariables are not developed by engineering judgment so that the

odel tends to be a black box. Further there is greater computa-

ional burden and proneness to overfitting, and the sample size
as to be large [38]. The network consists of numerous individual
rocessing units called neurons and commonly interconnected in
variety of structures. The strength of these interconnections is
100 0.718 y = 0.363X + 34.5
25 0.979 y = 1.02X − 0.874

100 0.987 y = 0.982X + 1.23
37 0.985 y = 0.963X + 2.09

determined by the weight associated with neurons. The multilayer
feed-forward net is a parallel interconnected structure consisting of
input layer and includes independent variables, number of hidden
layers and output layer [32].

In this study, a three-layered backpropagation neural network
with tangent sigmoid transfer function (tansig) at hidden layer and
a linear transfer function (purelin) at output layer was used. The
backpropagation algorithm was used for network training.

Neural Network Toolbox V4.0 of MATLAB mathematical soft-
ware was used for COD removal prediction. Data sets (120
experimental sets) were obtained from our previous study [3] and
were divided into input matrix [p] and target matrix [t]. The input
variables were reaction time (t), H2O2/COD molar ratio, H2O2/Fe2+

molar ratio, pH and antibiotic concentration. The corresponding
COD removal percent was used as a target. To ensure that all vari-
ables in the input data are important, principal component analysis
(PCA) was performed as an effective procedure for the determina-
tion of input parameters. It was observed that all input variables
were important. The data sets were divided into training (one half),
validation (one fourth) and test (one fourth) subsets, each of which
contained 60, 30 and 30 samples, respectively.

3. Results and discussion

3.1. Selection of backpropagation training algorithm

To determine the best backpropagation (BP) training algorithm,
ten BP algorithms were studied. Tangent sigmoid transfer function
(tansig) at hidden layer and a linear transfer function (purelin) at
output layer were used. In addition, 5 neurons were used in the
hidden layer as initial value for all BP algorithms. Table 1 shows a
comparison of different backpropagation (BP) training algorithms.
Levenberg–Marquardt backpropagation algorithm (LMA) was able
to have smaller mean square error (MSE) compared to other
backpropagation algorithms. So, LMA was considered the training
algorithm in the present study.

3.2. Optimization of neurons number

The optimum number of neurons was determined based on the
minimum value of MSE of the training and prediction set [28]. The
optimization was done by using LMA as a training algorithm and
varying neuron number in the range 1–20. Fig. 1 shows the rela-
tionship between number of neurons and MSE. MSE was 0.302316
when one neuron was used and decreased to 0.000376 when 14
neurons were used. Increasing of neurons more than 14 did not

significantly decrease MSE. Hence, 14 neurons were selected as the
best number of neurons. Fig. 2 shows the optimized neural network
structure. It has three-layer ANN, with tangent sigmoid transfer
function (tansig) at hidden layer with 14 neurons and linear transfer
function (purelin) at output layer.
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Fig. 1. Relationship between number of neurons and MSE.
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.3. Test and validation of the model

The data sets were used to feed the optimized network in
rder to test and validate the model. Fig. 3 shows a comparison
etween experimental COD removal values and predicted values
sing the neural network model. The figure contains two lines, one

s the perfect fit y = X (predicted data = experimental data) and the
ther is the best fit indicated by a solid line with best liner equa-
ion y = (0.999)X + 0.116, correlation coefficient (R2) 0.997 and MSE
.000376. This agrees well with the correlation coefficient reported

n the literature—a correlation coefficient of 0.985 for prediction
f nitrogen oxides removal by TiO2 photocatalysis [39], 0.998 for
rediction of methyl tert-butyl ether (MTBE) by UV/H2O2 process
40], 0.966 for prediction of polyvinyl alcohol degradation in aque-
us solution by the photo-Fenton process [41], 0.995 for removal
f humic substances from the aqueous solutions by ozonation [42]
nd 0.98 for decolouration of Acid Orange 52 dye by UV/H O pro-
2 2
ess [43].

Fig. 2. Optimized A
Fig. 3. Comparison between predicted and experimental values of the output.

3.4. Sensitivity analysis

In order to assess the relative importance of the input variables,
two evaluation processes were used. The first one was based on the
neural net weight matrix and Garson equation [31,44]. He proposed
an equation based on the partitioning of connection weights:

∑m=Nh
m=1

((∣∣∣Wih
jm

∣∣∣/
∑Ni

k=1

∣∣Wih
km

∣∣) ×
∣∣Who

mn

∣∣)
where, Ij is the relative importance of the jth input variable on the
output variable, Ni and Nh are the number of input and hidden neu-

NN structure.
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Table 2
Weight matrix, weights between input and hidden layers (W1) and weights between hidden and output layers (W2).

Neuron W1 W2

Input variables Output

Time H2O2/COD H2O2/Fe2+ pH Antibiotics concentration COD removal %

1 0.8869 0.0855 −0.7863 −0.2422 0.3197 0.7394
2 0.1251 −2.0537 −0.2143 0.8923 −2.1553 1.9441
3 0.1996 −0.0919 −0.8751 0.2114 0.0137 −1.4281
4 0.0048 0.6453 0.0236 −0.786 −0.4838 0.836
5 1.1772 0.84 0.8969 1.0508 0.045 −0.7664
6 −0.6675 −1.1887 1.4041 0.7599 0.0555 −0.5634
7 −0.8075 −1.0106 0.7954 −1.0555 0.5573 −0.9707
8 −0.6322 −0.2504 0.7846 0.4784 −0.5846 −1.0221
9 0.4747 0.2399 0.1719 0.6281 −0.2614 −1.0734

10 −0.875 0.4465 −0.0579 0.4996 0.9659 −0.1611
11 −0.9162 −0.4413 −1.73
12 0.4797 −0.0523 −1.0736
13 0.3521 0.028 0.8121
14 0.5326 1.355 0.4631

Table 3
Relative importance of input variables.

Input variable Importance %

H2O2/Fe2+ 25.8
pH 22.1
H2O2/COD 18.2
Time 17.1
Antibiotic concentration 16.8

r
‘
s
r

tion of variables [28]. Performance of the groups of one, two, three,
four, and five variables were examined by the optimal ANN struc-

T
E

Total 100

ons, respectively and W is connection weight, the superscripts ‘i’,

h’ and ‘o’ refer to input, hidden and output layers, respectively and
ubscripts ‘k’, ‘m’ and ‘n’ refer to input, hidden and output neurons,
espectively.

able 4
valuation of possible combinations of input variables.

Combination Mean square error (MSE) Epoch

p1 365.889 6
p2 276.46 8
p3* 270.141 10
p4 378.575 7
p5 404.727 12
p1 + p2 0.500941 7
p1 + p3 0.451707 8
p1 + p4 0.65364 9
p1 + p5 0.714965 6
p2 + p3 0.415012 9
p2 + p4 0.388861 5
p2 + p5 0.552496 5
p3 + p4* 0.304122 9
p3 + p5 0.571864 10
p4 + p5 0.755573 5
p1 + p2 + p3 0.313754 16
p1 + p2 + p4 0.2901 14
p1 + p2 + p5 0.453212 10
p1 + p3 + p4 0.141262 25
p1 + p3 + p5 0.43797 10
p1 + p4 + p5 0.583005 16
p2 + p3 + p4* 0.117252 12
p2 + p3 + p5 0.379122 47
p3 + p4 + p5 0.300483 25
p1 + p2 + p3 + p4* 0.00278282 34
p1 + p2 + p3 + p5 0.270749/0 25
p1 + p2 + p4 + p5 0.264695 15
p1 + p3 + p4 + p5 0.139748 15
p2 + p3 + p4 + p5 0.113608 36
p1 + p2 + p3 + p4 + p5* 0.000376 20

* Best group performance.
−1.4311 0.1075 −1.4267
0.2493 0.2117 −1.018

−0.5173 −0.4002 −0.3725
1.0192 1.5174 1.3226

Table 2 shows the weights between the artificial neurons pro-
duced by the ANN model used in this work. Table 3 shows the
relative importance of the input variables calculated by Eq. (1). All
variables have strong effect on antibiotic degradation in terms of
COD removal. The H2O2/Fe2+ molar ratio appears to be the most
influential variable followed by pH, H2O2/COD molar ratio, reaction
time and antibiotic concentration. The low relative importance of
antibiotic concentration reveals that the selected H2O2/COD and
H2O2/Fe2+ molar ratios are valid for a wide range of wastewater
strength.

The second evaluation process is based on the possible combina-
ture using the LMA with 14 hidden neurons. The input variables
were p1 (reaction time), p2 (H2O2/COD molar ratio), p3 (H2O2/Fe2+

molar ratio), p4 (pH), and p5 (antibiotics concentration). Table 4

Correlation coefficient (R2) Best linear equation

0.315 y = 3.71X + 880
0.599 y = 7.44X + 763
0.616 y = 8.93X + 689
0.395 y = 3.15X + 991
0.284 y = 1.7X + 953
0.538 y = 0.409X + 29.2
0.649 y = 0.452X + 25.9
0.451 y = 0.32X + 31.8
0.391 y = 0.30X + 38
0.742 y = 0.528X + 25
0.764 y = 0.528X + 24.3
0.636 y = 0.405X + 32.1
0.848 y = 0.701X + 16.9
0.646 y = 0.509X + 23.5
0.487 y = 0.232X + 40.6
0.802 y = 0.642X + 18.1
0.825 y = 0.675X + 16.4
0.702 y = 0.675X + 25.2
0.873 y = 0.873X + 6.2
0.69 y = 0.57X + 21.1
0.528 y = 0.57X + 32.7
0.936 y = 0.849X + 9.37
0.77 y = 0.579X + 23.1
0.85 y = 0.695X + 17.1
0.995 y = 0.997X + 0.402
0.818 y = 0.679X + 15.7
0.832 y = 0.682X + 15.8
0.912 y = 0.87X + 6.27
0.915 y = 0.862X + 8.92
0.997 y = 0.999X + 0.116
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Fig. 4. Comparison between ANN output and experimental results at diff

hows the results of the sensitivity analysis for different combina-
ions of variables.

The sensitivity analysis showed that p3 (H2O2/Fe2+ molar ratio)
as the most effective parameter among other variable in the group

f one variable. The MSE (270.141) decreased up to 0.304122, which
s the minimum value of the group of two variables when p4 (pH)

as used in combination with p3. The MSE (0.304122) decreased
p to 0.117252, which is the minimum value of the group of three
ariables when p2 (H2O2/COD) was used in combination with p3
nd p4. The MSE (0.117252) decreased up to 0.002782, which is the
inimum value of the group of four variables when p1 (reaction

ime) was used in combination with p3, p4 and p1. Then, the MSE
0.002782) decreased up to 0.000376, which is the minimum value
f the group of four variables when p5 (antibiotics concentration)
as used in combination with p3, p4, p1 and p5. The best group
erformances according to number of parameters are highlighted

n Table 4. MSE values decreased as the number of variables in the
roup increased due to the contribution of all parameters (Table 4).
t can be concluded that H2O2/Fe2+ molar ratio is the most effective
arameter. In addition, all variables have strong effect on antibiotic
egradation in terms of COD removal and it agrees well with the
ensitivity analysis using Garson equation.

.5. Effect of H2O2/COD molar ratio

To examine the effect of H2O2/COD molar ratio on COD removal,
nitial H2O2 concentration was varied in the range 15–54 mM
t constant initial COD 520 mg/L (16.25 mM). The correspond-

ng H2O2/COD molar ratios were 1, 1.5, 2, 2.5, 3 and 3.5. Initial
MX, AMP and CLX concentrations were 104, 105 and 103 mg/L,
espectively. The other operating conditions were fixed at pH

and H2O2/Fe2+ molar ratio 50. Fig. 4A–F shows a comparison
etween the predicted and experimental values of COD removal at
H2O2/COD molar ratio: (A) 1.0, (B) 1.5, (C) 2.0, (D) 2.5, (E) 3.0 and (F) 3.5.

H2O2/COD molar ratio 1.0, 1.5, 2.0, 2.5, 3.0 and 3.5, respectively. The
results show increase of COD removal at H2O2/COD molar ratio 1–3
and further increase in H2O2/COD molar ratio did not improve the
COD removal. This may be due to scavenging of OH• by H2O2 as in
Reaction (R1) [45]. In terms of the relation between the experimen-
tal results and the predicted values of COD removal by the model,
Fig. 4A–F shows that predicted values are in good agreement with
the experimental results.

OH• + H2O2 → H2O + HO2
• (R1)

3.6. Effect of H2O2/Fe2+ molar ratio

In Fenton process, iron and hydrogen peroxide are two
major chemicals determining the operation cost as well as effi-
ciency. To examine the effect of H2O2/Fe2 molar ratio on COD
degradation, experiments were conducted at constant H2O2 con-
centration (46.87 mM) and varying Fe2+ concentration in the range
0.32–24.3 mM. The corresponding H2O2/Fe2+ molar ratios were in
the range 2–150. Initial AMX, AMP and CLX concentration were 104,
105 and 103 mg/L, respectively. The operating conditions were pH
3, H2O2/COD molar ratio 3 and initial COD 520 mg/L (16.25 mM).
Fig. 5A–F shows a comparison between the predicted and exper-
imental values of COD removal at H2O2/Fe2+ molar ratio 2, 5, 10,
20, 50 and 100, respectively. The results show that COD removal
increased with decrease of H2O2/Fe2+ molar ratio up to 10. Fur-
ther decrease in H2O2/Fe2+ molar ratio below 10 did not improve
the degradation of antibiotics in terms of COD removal. This may
be due to direct reaction of OH• radical with metal ions at high

concentration of Fe2+ [46] as in Reaction (R2).

Fe2+ + HO• → Fe3+ + HO− (R2)

In terms of the relation between the experimental results and
the predicted values of COD removal by the model, Fig. 5A–E shows
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Fig. 5. Comparison between ANN output and experimental results at d

hat predicted values are in good agreement with the experimental
esults.
.7. Effect of pH

The pH value influences the generation of hydroxyl radi-
als and hence the oxidation efficiency. To examine the effect
f pH, experiments were conducted by varying the pH in the

Fig. 6. Comparison between ANN output and experimental
nt H2O2/Fe2+ molar ratio: (A) 2, (B) 5, (C) 10, (D) 20, (E) 50 and (F) 100.

range 2–4. Initial AMX, AMP and CLX concentrations were 104,
105 and 103 mg/L, respectively. The operating conditions were
H2O2/COD molar ratio 3, H2O2/Fe2+ molar ratio 10 and initial COD

520 mg/L. Fig. 6A–D shows a comparison between the predicted
and experimental values of the COD removal at pH 2, 2.5, 3 and 4,
respectively.

The results show that pH significantly influences COD removal.
Decrease in COD removal at pH higher than 3 may be due to the

results at different pH: (A) 2, (B) 2.5, (C) 3 and (D) 4.



E.S. Elmolla et al. / Journal of Hazardous Materials 179 (2010) 127–134 133

nt AM

d
h
s
b
w
d
a
t
t
r

3

m
A
a
2
3
p
r
(
c
c
o
e
0
t
a
C
w
c
t
F
w

4

t
i
t
t
a
l
t
t
a
v
r
o
m
t

[

[

[

[

[

[

[

[

Fig. 7. Comparisons between ANN output and experimental results at differe

ecrease in dissolved iron and oxidation rate [45,47,48]. Further,
ydrogen peroxide is stable at low pH probably because it gets
olvated in the presence of high concentration of H+ to form sta-
le oxonium ion (H3O2

+), thus reducing substantially its reactivity
ith ferrous ion [49]. Therefore, amount of hydroxyl radicals would
ecrease at low pH, decreasing degradation of antibiotic intermedi-
tes. In terms of the relation between the experimental results and
he predicted values of COD removal by the model, Fig. 6A–D shows
hat predicted values are in good agreement with the experimental
esults.

.8. Effect of initial antibiotics concentration and reaction time

To observe the effect of initial antibiotic concentration, experi-
ents were conducted by varying the initial concentration of AMX,
MP and CLX as 100, 250 and 500 mg/L for each antibiotic in the
queous solution. The corresponding COD were 520, 1200 and
440 mg/L. The operating conditions were H2O2/COD molar ratio
, H2O2/Fe2+ molar ratio 10 and pH 3. Fig. 7A and B shows a com-
arison between the predicted and experimental values of COD
emoval at AMX, AMP and CLX concentration 100 and 500 mg/L
data not shown for 250 mg/L) for each antibiotic. The results indi-
ate marginal decrease in COD removal with increase of antibiotics
oncentration. A statistical analysis (one-way ANOVA) performed
n the results at a 5% level of significance indicated no significant
ffect of antibiotic concentration on the COD degradation (p-value
.917). It is also confirmed by sensitivity analysis in Section 3.4
hat the antibiotics concentration is the lowest influential vari-
ble among the studied variables. This reveals that the selected
OD/H2O2/Fe2+ molar ratio (1:3:0.30) is optimum for this type of
astewater and suitable for a wide range of antibiotics wastewater

oncentration. In terms of the relation between the experimen-
al results and the predicted values of COD removal by the model,
ig. 7A and B shows that the predicted values are in good agreement
ith the experimental results.

. Conclusions

A three-layer backpropagation neural network was optimized
o predict the degradation of amoxicillin, ampicillin and cloxacillin
n aqueous solution in terms of COD removal. The configuration of
he backpropagation neural network giving the smallest MSE was
hree-layer ANN with tangent sigmoid transfer function (tansig)
t hidden layer with 14 neurons, linear transfer function (pure-
in) at output layer and Levenberg–Marquardt backpropagation
raining algorithm (LMA). ANN predicted results are very close to
he experimental results with correlation coefficient (R2) of 0.997
nd MSE 0.000376. The sensitivity analysis showed that all studied

ariables (reaction time, H2O2/COD molar ratio, H2O2/Fe2+ molar
atio, pH and antibiotic concentration) have strong effect on antibi-
tic degradation in terms of COD removal. In addition, H2O2/Fe2+

olar ratio is the most influential parameter with relative impor-
ance of 25.8%. ANN results showed that neural network modeling

[

[

X, AMP and CLX concentration: (A) 100 and (B) 500 mg/L for each antibiotic.

could effectively simulate and predict the behavior of the pro-
cess.
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